Specification of Neuropeptide Cell Identity by the Integration of Retrograde BMP Signaling and a Combinatorial Transcription Factor Code

نویسندگان

  • Douglas W. Allan
  • Susan E.St. Pierre
  • Irene Miguel-Aliaga
  • Stefan Thor
چکیده

Individual neurons express only one or a few of the many identified neurotransmitters and neuropeptides, but the molecular mechanisms controlling their selection are poorly understood. In the Drosophila ventral nerve cord, the six Tv neurons express the neuropeptide gene FMRFamide. Each Tv neuron resides within a neuronal cell group specified by the LIM-homeodomain gene apterous. We find that the zinc-finger gene squeeze acts in Tv cells to promote their unique axon pathfinding to a peripheral target. There, the BMP ligand Glass bottom boat activates the Wishful thinking receptor, initiating a retrograde BMP signal in the Tv neuron. This signal acts together with apterous and squeeze to activate FMRFamide expression. Reconstituting this "code," by combined BMP activation and apterous/squeeze misexpression, triggers ectopic FMRFamide expression in peptidergic neurons. Thus, an intrinsic transcription factor code integrates with an extrinsic retrograde signal to select a specific neuropeptide identity within peptidergic cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Independent roles of the dachshund and eyes absent genes in BMP signaling, axon pathfinding and neuronal specification.

In the Drosophila nerve cord, a subset of neurons expresses the neuropeptide FMRFamide related (Fmrf). Fmrf expression is controlled by a combinatorial code of intrinsic factors and an extrinsic BMP signal. However, this previously identified code does not fully explain the regulation of Fmrf. We have found that the Dachshund (Dac) and Eyes Absent (Eya) transcription co-factors participate in t...

متن کامل

BMP signaling orchestrates photoreceptor specification in the zebrafish pineal gland in collaboration with Notch.

A variety of signaling pathways have been shown to regulate specification of neuronal subtype identity. However, the mechanisms by which future neurons simultaneously process information from multiple pathways to establish their identity remain poorly understood. The zebrafish pineal gland offers a simple system with which to address questions concerning the integration of signaling pathways du...

متن کامل

Squeeze involvement in the specification of Drosophila leucokinergic neurons: Different regulatory mechanisms endow the same neuropeptide selection

One of the most widely studied phenomena in the establishment of neuronal identity is the determination of neurosecretory phenotype, in which cell-type-specific combinatorial codes direct distinct neurotransmitter or neuropeptide selection. However, neuronal types from divergent lineages may adopt the same neurosecretory phenotype, and it is unclear whether different classes of neurons use diff...

متن کامل

Mesenchymal Stem Cells: Signaling Pathways in Transdifferentiation Into Retinal Progenitor Cells

Several signaling pathways and transcription factors control the cell fate in its in vitro development and differentiation. The orchestrated use of these factors results in cell specification. In coculture methods, many of these factors secrete from host cells but control the process. Today, transcription factors required for retinal progenitor cells are well known, but the generation of these ...

متن کامل

Specification of Neuronal Identities by Feedforward Combinatorial Coding

Neuronal specification is often seen as a multistep process: earlier regulators confer broad neuronal identity and are followed by combinatorial codes specifying neuronal properties unique to specific subtypes. However, it is still unclear whether early regulators are re-deployed in subtype-specific combinatorial codes, and whether early patterning events act to restrict the developmental poten...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 113  شماره 

صفحات  -

تاریخ انتشار 2003